Week 5 Overview

[bookmark: _GoBack]We will clean up the code by using functions to make the code easier to modify and to read. We will also identify several bugs in our design.

// GSP115 TREASURE CAVE
// Week 4
#pragma once
#include "GSP115_Course_Project.h"

// Global Constants
const int MAX_ROWS = 7;
const int MIN_ROWS = 0;
const int MAX_COLS = 7;
const int MIN_COLS = 0;
const int TOTAL_ROWS = MAX_ROWS + 1;
const int TOTAL_COLS = MAX_COLS + 1;

//Display Constants
const char ULC = 201;		//Upper left corner
const char HB = 205;		//Horizontal border
const char URC = 187;		//Upper right corner
const char VB = 186;		//Vertical border
const char LRC = 188;		//Lower right corner
const char LLC = 200;		//Lower left corner
const char MT = ' ';		//Empty location
const char PSymbol = 'P';	//Player symbol
const char TOSymbol = 'T';	//Torch symbol
const char WSymbol = 'W';	//Weapon symbol
const char TRSymbol = '$';	//Treasure symbol
const char MSymbol = 'M';	//Monster symbol
const char NSymbol = 'N';	//Noisemaker symbol
const char XSymbol = 'X';	//Cave exit symbol

using namespace std;

// function prototypes
gameObject placeInCave(gameObjectType array[TOTAL_ROWS][TOTAL_COLS]);
// <WK4 status=permanent>
bool checkVisible(gameObject x, gameObject y, int dist);
// </WK4>
bool showOnBoard(gameObject x);

int main()
{
	//**Initialize Variables**
	srand(time(NULL));		// Seed the random number function

	gameObjectType cave[TOTAL_ROWS][TOTAL_COLS];	// the cave--a two dimensional array
	char board[TOTAL_ROWS+3][TOTAL_COLS+3]=		// the game board--a two dimensional array
	{
		{MT,MT,'0','1','2','3','4','5','6','7',MT},
		{MT,ULC,HB,HB,HB,HB,HB,HB,HB,HB,URC},
		{'A',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{'B',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{'C',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{'D',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{'E',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{'F',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{'G',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{'H',VB,MT,MT,MT,MT,MT,MT,MT,MT,VB},
		{MT,LLC,HB,HB,HB,HB,HB,HB,HB,HB,LRC}
	};

	playerObject player ={true, false, false, false, false,{-1, -1, false, true}};	// the player
	gameObject treasure = {-1, -1, false, true};		// the treasure
	gameObject monster = {-1, -1, false, true};		// the monster
	gameObject weapon = {-1, -1, false, true};		// the weapon
// <WK4 status=permanent>
		gameObject torch = {-1, -1, false, true};		// the torch
		gameObject noisemaker = {-1, -1, false, true};	// the noisemaker
// </WK4>
	int row, column;				// temporarily hold the new player position
	int MonsterMoveCounter = 6;		// track and control monster movement around treasure
	string msg;				// status message variable
	char command;				// player input
// <WK4 status=permanent>
		bool monsterPause = false;	// flag to indicate the monster has stopped moving
// </WK4>
	bool movePlayer = true;		// flag to indicate the player position can be updated
	bool gameOver = false;		// status flag

	//**Prepare Cave***********
	//...Initialize an empty cave
	for (gameObjectType (&R)[TOTAL_COLS] : cave)
	{
		for (auto &C : R) C = EMPTY;
	}

	//...Add player in rows 0-2, columns 0-2
	player.position.row = rand() %3;
	player.position.column = rand()%3;
	cave[player.position.row][player.position.column] = PLAYER;
	//...Add Treasure in rows 4-6, column 1-6
	treasure.row = rand()%3 + 4;
	treasure.column = rand()%6 +1;
	cave[treasure.row][treasure.column] = TREASURE;
	//...Add Monster at treasure row +1 , column -1
	monster.row = treasure.row + 1;
	monster.column = treasure.column -1;
	cave[monster.row][monster.column] = MONSTER;
	//...Add Weapon in any empty location
	weapon = placeInCave(cave);
	cave[weapon.row][weapon.column] = WEAPON;
// <WK4 status=permanent>
	//...Add Noisemaker in any empty location
		noisemaker = placeInCave(cave);
		cave[noisemaker.row][noisemaker.column] = NOISEMAKER;
		//...Add Torch in any empty location
		torch = placeInCave(cave);
		cave[torch.row][torch.column] = TORCH;
// </WK4>
	//**Play Game*************
	//...Begin Game Loop
	while (!gameOver)
	{
		//....Display Board
	// <WK4 status=permanent>
		//.....Check visibility
		if (!player.hasTorch)
		{
			torch.isVisible = checkVisible(player.position, torch, 2);
			weapon.isVisible = checkVisible(player.position, weapon, 2);
			treasure.isVisible = checkVisible(player.position, treasure, 2);
			monster.isVisible = checkVisible(player.position, monster, 2);
			noisemaker.isVisible = checkVisible(player.position, noisemaker, 2);
		}
	// </WK4>
		//.....Place visible objects on board--note: changing the order below will create a visual bug.
		board[weapon.row+2][weapon.column+2] = showOnBoard(weapon)?WSymbol:MT;
	// <WK4 status=permanent>
		board[torch.row+2][torch.column+2] = showOnBoard(torch)?TOSymbol:MT;
	// </WK4>
		board[treasure.row+2][treasure.column+2] = showOnBoard(treasure)?TRSymbol:MT;
	// <WK4 status=permanent>
		board[noisemaker.row+2][noisemaker.column+2] = showOnBoard(noisemaker)?NSymbol:MT;
	// </WK4>
		board[monster.row+2][monster.column+2] = showOnBoard(monster)?MSymbol:MT;
		board[player.position.row+2][player.position.column+2] = player.alive?PSymbol:MT;

		// Put the board on the screen
		for (char (&R)[TOTAL_COLS+3] : board)
		{
			for (char &C : R)
			{
				cout << C;
			}
			cout << endl;
		}

		cout << msg.c_str() << endl;
		//....Get command
		cout << "What is your command? ";
		cin >> command;
		//....Clear display and message
		msg.clear();
		system("cls");
		//....Process player command
		row = player.position.row;
		column = player.position.column;
		switch (command)
		{
		case 'a':
			column = player.position.column - 1;
			if (column < MIN_COLS)
			{
				column = player.position.column;
				msg = "You have hit the west wall!";
			}
			break;
		case 's':
			row = player.position.row + 1;
			if (row > MAX_ROWS)
			{
				row = player.position.row;
				msg = "You have hit the south wall!";
			}
			break;
		case 'w':
			column = player.position.column;//Is this really needed?
			row = player.position.row - 1;
			if (row < MIN_ROWS)
			{
				row = player.position.row;
				msg = "You have hit the north wall!";
			}
			break;		
		case 'd':
			row = player.position.row;//Is this really needed?
			column = player.position.column + 1;
			if (column > MAX_COLS)
			{
				column = player.position.column;
				msg = "You have hit the east wall!";
			}
			break;		
// <WK4 status=permanent>
		case 'n':
			if (player.hasNoisemaker)
			{
				msg = "You make an irritating noise!";
				monsterPause = true;
			}
			else
			{
				msg = "You make a feeble whimper.";
			}
			break;
// </WK4>
		case 'q':
			gameOver = true;
			msg = "Quitting?\n";
			break;
		default:
			movePlayer = false;
			break;
		}
		//....Check if the game is over
		if (!gameOver)
		{

			//..... Check for events
			switch (cave[row][column])
			{
				//......If treasure found, set flag to show player has treasure
			case TREASURE:
				player.hasTreasure = true;
				treasure.isFound = true;
				msg = "You found the treasure!";
				gameOver = true;
				break;
				//......If weapon found, set flag to show player has weapon
			case WEAPON:
				player.hasWeapon = true;
				weapon.isFound = true;
				msg = "You have a weapon.";
				break;
// <WK4 status=permanent>
				//......If noise-maker found, set flag to show player has noise-maker
			case NOISEMAKER:
				player.hasNoisemaker = true;
				noisemaker.isFound = true;
				msg = "You found a noisemaker.";
				break;
				//......If torch found, set flag to show player has torch
			case TORCH:
				player.hasTorch = true;
				torch.isFound = true;
				msg = "Let there be light! You found a torch.";
				weapon.isVisible = true;
				treasure.isVisible = true;
				noisemaker.isVisible = true;
				monster.isVisible = true;
				break;
// </WK4>
				//......If monster found
			case MONSTER:
				if (!monster.isFound)
				{
					msg = "You have found the monster";
					//.......Resolve combat
					if (player.hasWeapon)
					{
						msg = "You have slain the monster";
						monster.isFound = true;
					}
					else
					{
						gameOver = true;
						player.alive = false;
						msg="The monster has killed you";
					}
				}
				break;
			}
			//.....Move Player
			if (movePlayer)
			{
				cave[player.position.row][player.position.column] = EMPTY;		//updates position information
				cave[row][column] = PLAYER;
				board[player.position.row+2][player.position.column+2] = MT;	//clear the screen where player was
				player.position.row = row;
				player.position.column = column;
			}
			movePlayer = true;
			//.....Process Monster
			if (!monster.isFound)
			{
// <WK4 status=permanent>
				if (monsterPause)
				{
					// Monster paused. Check if Monster starts moving again
					if (rand()%3 == 1)
					{
						monsterPause = false;
					}
				}
				else
				{
// </WK4>
					//......Move Monster
					MonsterMoveCounter = (++MonsterMoveCounter)%8;
					row = monster.row;
					column = monster.column;
					switch (MonsterMoveCounter)
					{
					case 0:
						column++;
						break;
					case 1:
						row--;
						break;
					case 2:
						row--;
						break;
					case 3:
						column--;
						break;
					case 4:
						column--;
						break;
					case 5:
						row++;
						break;
					case 6:
						row++;
						break;
					case 7:
						column++;
						break;
					default:
						break;
					}
					//......Check for events
					//.......If player found
					if (cave[row][column] == PLAYER)
					{
						msg = "The monster has found you";
						//........Resolve combat
						// <WK3 status=5>
						if (player.hasWeapon)
						{
							msg = "The monster found you but was slain";
							monster.isFound = true;
						}
						else
						{
// <WK2 status=5>
							gameOver = true;
							player.alive = false;
							msg = "The monster found you and you have died";
						}
// </WK2>
					}
					else
					{
						//........Move Monster
						//cave[monster.row][monster.column] = hold;		// reveal what is under the monster <bug fix in week 6>
						cave[monster.row][monster.column] = EMPTY;	// clear the cave location <creates bug>
						board[monster.row+2][monster.column+2] = MT;	// clear the screen behind monster
						//hold = cave[row][column];						// save what the monster is about to move over <bug fix in week 6>
						monster.row = row;								// update monster's row
						monster.column = column;						// update monster's column
						cave[row][column] = MONSTER;					// change monster's location in the cave
					}
				}//-add else clause in week4

			}
		}
	}
	//...End Game Loop
	//**End Game**************
	//...Provide end win/loss message
	cout << msg.c_str() << endl;
	if (player.alive)
	{
		if (player.hasTreasure) msg = "You are alive and rich!";
		else msg = "You didn't get the treasure, but you live to seek adventure another day.";
	}
	else
	{
		msg = "RIP Adventurer";
	}
	cout << msg.c_str() << endl;
	//...Do clean-up
	//...Quit
	return 0;
}

//--
//==

gameObject placeInCave(gameObjectType array[TOTAL_ROWS][TOTAL_COLS])
{
	int r, c;
	gameObject obj;
	do
	{
		r = rand()%8;
		c = rand()%8;
	} while (array[r][c] != EMPTY);
	obj.row = r;
	obj.column = c;
	obj.isFound = false;
	return obj;
}

// <WK4 status=permanent>
bool checkVisible(gameObject x, gameObject y, int dist)
{
	if ((abs(x.row - y.row) < dist && (abs(x.column - y.column) < dist))) return true;
	return false;
}
// </WK4>

bool showOnBoard(gameObject x)
{
	return ((x.isVisible)&&(!x.isFound));
}

HEADER FILE (Replace Week 3 Header File)
#pragma once
#include <iostream>
#include <conio.h>
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <windows.h>

enum gameObjectType
{
 	EMPTY, PLAYER, TREASURE, MONSTER, WEAPON, TORCH, NOISEMAKER//, CAVE_EXIT -add in week 6
};

struct gameObject
{
 	int row; 	// row position of the object
 	int column; 	// column position of the object
 	bool isFound; 	// flag to indicate if the object has been found (or is dead, in the case of the monster)
 	bool isVisible; 	// flag to indicate if the object can be seen on the board -add in week 4
};

struct playerObject
{
 	bool alive; 	// flag to indicate if the player is alive or dead
 	bool hasWeapon; 	// flag to indicate if the player has the weapon
 	bool hasTreasure; 	// flag to indicate if the player has the treasure
 	bool hasTorch; 	// flag to indicate if the player has the torch -add in week 4
 	bool hasNoisemaker; 	// flag to indicate if the player has the noisemaker -add in week 4
 	gameObject position;	// variables for row, column and visibility
};
